Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas.

Como resolvo Equaçoes do Segundo Grau com Fraçoes e com o denominador com adiçao ou subtraçao.

 

1 Exemplo:    x  +  1     =  6   

                               x-4

 

 

2 Exemplo:   x     +            2                 =   0

                      x-1      x elevado a 2 - 1

 

 

Ajudem ae geente por favor  , resolvam usando delta e baskara '



Sagot :

Efetue a soma algebrica das frações:

 

                 x + 1 / (x - 4) = 6

 

               x(x - 4) + 1 = (x - 4).6

 

              x^2 - 4x + 1 = 6x - 24

 

              x^2 - 10x + 25 = 0

 

Resolvendo por fatoração ou Baskara

 

              x1 = 5

 

             x2 = 5

 

Baskara:

 

                     delta = b^2 - 4.a.c

 

                     (-10)^2 - 4.1.25 = 100 - 100 = 0

 

                   x = (-b + - raiz quadrada de delta) / 2.a

 

                      = -b / 2a

 

                        = - (-10) / 2 = 5

 

A outra segue o mesmo processo

 

DICA: mmc dos denominadores (x elevado a 2 - 1) = (x + 1).(x - 1)

 

Ajudou?

 

Ajudou?

 

 

1° como já explicado antes vc tira o mmc

 

x - 4 | x - 4  (perceba que só da dividir por ele mesmo entao esse é o próprio mmc)

1

 

mmc =  x - 4

 

Como já explicado também antes. Pega o mmc e divide pelo denominador e depois multiplica pelo numerador , faz isso com cada membro da equação ficando assim:

 

[tex]x+\frac{1}{x-4} [/tex]=

 

x - 4 divido     por 1 e multiplicado por x =  (x-4).x

x - 4 dividido por x- 4 e multiplicado por 1  = 1

x - 4 dividido por 1 e multplicado por 6 = (x-4).6

 

entao fica no final assim:

 

(x-4).x + 1 = (x-4).6

 

x² -4x +1 = 6x - 24

x² -10x +25

Agora só resolver normal:

x1 = 5  ;    x2 = 5

 

2° [tex]\frac{x}{x-1}+\frac{2}{x^{2}-1}=0[/tex]

 

Comparado com as outras essa é um pouco mais complicadinha, mais vc só precisa saber que quando no denominador temos [tex]x^{2}-1[/tex], temos que deixar essa equação de forma mais simples ficando assim:

 

 [tex]x^{2}-1[/tex] =[tex](x+1)(x-1)[/tex]  (produto notáveis)

 

Pra que eu fiz isso ne? Vamos la

 

Observe que tem um x -1 em um dos denominadores... Pra facilitar  pra tirar o mmc tem que deixar a equação de forma mais simples como eu acabei de fazer usando produto notáveis que agora vai ficar assim:

 

 [tex]\frac{x}{x-1}+\frac{2}{x^{2}-1}=0[/tex] 

 

[tex]\frac{x}{x-1}+\frac{2}{(x+1)(x-1)}=0[/tex]    certo?

 

Agora podemos tirar o mmc:

 

(x+1) , (x-1) | x+1

  1,      (x-1)| x -1

  1,        1

 

mmc = (x+1)(x-1) 

 

Agora como já explicado dividimos pelo denominador e depois multiplicamos pelo numerador (fazer isso com cada membro):

 

[tex]\frac{(x+1)(x-1)}{(x-1)}[/tex] = (x+1), agora multiplica ficando  (x+1)x

 

 

[tex]\frac{(x+1)(x-1)}{(x+1)(x-1)}[/tex] = 1 , agora multiplica ficando 1.2 = 2

 

e depois da igualdade qualquer coisa multplicado por 0 = 0

 

Depois disso a equação corta o denominador (x+1)(x-1) e fica só os numeradores que a gente acabou de calcular:

 

(x+1)x + 2  = 0

agora só resolver normal:

 

x² + x + 2 = 0

delta = negativo

 

não há raizes no conjunto dos  reais... S = {vazio}

 

 

 

 

 

Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.