Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.

A família de distribuições exponenciais fornece modelos probabilísticos largamente usados na engenharia e em várias disciplinas de ciência, negócios e da natureza.
De acordo com Costa Neto e Cymbalista (2012), um fenômeno de Poisson de parâmetro  é aquele em que o número de sucessos em um intervalo de observação t segue uma distribuição de Poisson de média , e em que T é um intervalo decorrido entre dois sucessos consecutivos. Nessas condições, a distribuição da variável aleatória T recebe a denominação de distribuição exponencial.
Diante dessa definição, assinale V para as alternativas verdadeiras e F para as falsas
I. De maneira que T seja maior que t genérico, é necessário que o próximo sucesso demore mais que t para ocorrer.
II. A expressão que rege a probabilidade de uma distribuição exponencial é dada por  
III. Tanto a média como o desvio-padrão da distribuição exponencial são iguais a .
IV. O parâmetro  é interpretado como o número médio de ocorrências por unidade de tempo, logo uma constante negativa.
V. A distribuição exponencial descreve o comportamento de uma variável aleatória x no espaço ou no tempo

A sequência correta é:

A - V,F,V,V,F
B - V,F,F,V,F
C - F,V,V,F,V
D - F,F,V,V,V
E - V,F,V,F,V​


Sagot :

Resposta:

V, F, V, F, V.

Explicação:

...

Obrigado por confiar em nós com suas perguntas. Estamos aqui para ajudá-lo a encontrar respostas precisas de forma rápida e eficiente. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.