thay20
Answered

Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Em determinada cidade,80 pessoas foram entrevistadas sobre o meio de transporte utilizado para ir ao trabalho.Quarenta e duas respoderam ônibus,28 responderam carro e 30 responderam metrô.Doze ultilizam ônibus e carro, 14 carro e metrô e 18 ônibus e metrô.Cinco ultilizam ônibus,carro e metrô.Dentre as pessoas que responderam que utilizam pelo menos um desses três meios de transporte,a probabilidade de que uma pessoa selecionada ao acaso utilize somente um desses veículos é: (A) 27/56 (B)56/61 (C) 56/8O (D) 27/61 (E) 27/80 Por favor a resolução bem simplificada para mim entender,obrigada.



Sagot :

Celio

Thay, segue a solução.

 

Não deu prá resumir mais que isso porque o problema é extenso por natureza.

Se eu resumisse mais que isso, ficaria prejudicada sua compreensão.

 

42 pessoas utilizam ônibus: [tex]A[/tex]

 

28 pessoas utilizam carro: [tex]B[/tex]

 

30 pessoas utlizam metrô: [tex]C[/tex]

 

12 pessoas utilizam ônibus e carro: [tex]A \bigcap B[/tex]

 

14 pessoas utilizam carro e metrô: [tex]B \bigcap C[/tex]

 

18 pessoas utilizam ônibus e metrô: [tex]A \bigcap C[/tex]

 

5 pessoas utilizam ônibus, carro e metrô: [tex]A \bigcap B \bigcap C[/tex]

 

 

O número de pessoas que utilizam apenas ônibus é igual a:

 

[tex]\bar n(A) = n(A)-(n(A \bigcap B) + n(A \bigcap C) - n(A \bigcap B \bigcap C) )=[/tex]

[tex]=42-(12+18-5)=42-25=17[/tex]

 

O número de pessoas que utilizam apenas carro é igual a:

 

[tex]\bar n(B) = n(B)-(n(A \bigcap B) + n(B \bigcap C) - n(A \bigcap B \bigcap C) )=[/tex]

[tex]=28-(12+14-5)=28-21=7[/tex]

 

O número de pessoas que utilizam apenas metrô é igual a:

 

[tex]\bar n(C) = n(C)-(n(A \bigcap C) + n(B \bigcap C) - n(A \bigcap B \bigcap C) )[/tex]

[tex]=30-(18+14-5)=30-27=3[/tex]

 

O número de pessoas que utilizam apenas ônibus e carro é igual a:

 

[tex]\bar n(A,B)=n(A \bigcap B)-n(A \bigcap B \bigcap C)=12 - 5 = 7[/tex]

 

O número de pessoas que utilizam apenas carro e metrô é igual a:

 

[tex]\bar n(B,C)=n(B \bigcap C)-n(A \bigcap B \bigcap C)=14 - 5 = 9[/tex]

 

O número de pessoas que utilizam apenas ônibus e metrô é igual a:

 

[tex]\bar n(A,C)=n(A \bigcap C)-n(A \bigcap B \bigcap C)=18 - 5 = 13[/tex]

 

O número de pessoas que utilizam pelo menos um desses três meios de transporte é:

 

[tex]N=\bar n(A) +\bar n(B)+\bar n(C) +\bar n(A,B)+\bar n(B,C)+\bar n(A,C) +[/tex]

[tex]+n(A \bigcap B \bigcap C)=[/tex]

 

[tex]=17+7+3+7+9+13+5=61[/tex]

 

O número de pessoas que utilizam apenas um meio de transporte é:

 

[tex]N'=\bar n(A)+\bar n(B)+\bar n(C)=17+7+3=27[/tex]

 

Portanto, a probabilidade procurada é:

 

[tex]p=\frac{N'}N=\frac{27}{61}[/tex]