O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Descubra soluções rápidas e confiáveis para suas perguntas com a ajuda de especialistas experientes em nossa plataforma amigável. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.
Sagot :
LOGARITMOS
Equações Logarítmicas 3° Tipo
[tex]Log _{3}(x+1)-Log _{9}(x+1)=1 [/tex]
Primeiramente vamos impor a condição de existência para o logaritmando, para que x satisfaça a equação:
(x+1)>0
x>-1
Vemos que os termos da equação estão em bases diferentes, vamos passar para a menor base, base 3:
[tex]Log _{3}(x+1)- \frac{Log _{3}(x+1) }{Log _{3}9 }=1 [/tex]
usando a definição, temos:
[tex]Log _{3}(x+1)- \frac{Log _{3}(x+1) }{2}=1 [/tex]
[tex]2Log _{3}(x+1)-Log _{3}(x+1)=2 [/tex]
[tex]Log _{3}(x+1)-Log _{3}(x+1)= \frac{2}{2} [/tex]
[tex]Log _{3}(x+1)-Log _{3}(x+1)=1 [/tex]
[tex]Log _{3} \frac{(x+1)}{(x+1)}=1 [/tex]
aplicando a definição, vem:
[tex] \frac{(x+1)}{(x+1)}=3 ^{1} [/tex]
[tex] \frac{(x+1)}{(x+1)}=3 [/tex]
[tex](x+1)=3(x+1)[/tex]
[tex](x+1)=3x+3[/tex]
[tex]x-3x=3-1[/tex]
[tex]-2x=2[/tex]
[tex]x= \frac{2}{-2} [/tex]
[tex]x=-1[/tex]
Este valor não satisfaz a condição de existência, portanto:
/
Solução: {O}
/
Equações Logarítmicas 3° Tipo
[tex]Log _{3}(x+1)-Log _{9}(x+1)=1 [/tex]
Primeiramente vamos impor a condição de existência para o logaritmando, para que x satisfaça a equação:
(x+1)>0
x>-1
Vemos que os termos da equação estão em bases diferentes, vamos passar para a menor base, base 3:
[tex]Log _{3}(x+1)- \frac{Log _{3}(x+1) }{Log _{3}9 }=1 [/tex]
usando a definição, temos:
[tex]Log _{3}(x+1)- \frac{Log _{3}(x+1) }{2}=1 [/tex]
[tex]2Log _{3}(x+1)-Log _{3}(x+1)=2 [/tex]
[tex]Log _{3}(x+1)-Log _{3}(x+1)= \frac{2}{2} [/tex]
[tex]Log _{3}(x+1)-Log _{3}(x+1)=1 [/tex]
[tex]Log _{3} \frac{(x+1)}{(x+1)}=1 [/tex]
aplicando a definição, vem:
[tex] \frac{(x+1)}{(x+1)}=3 ^{1} [/tex]
[tex] \frac{(x+1)}{(x+1)}=3 [/tex]
[tex](x+1)=3(x+1)[/tex]
[tex](x+1)=3x+3[/tex]
[tex]x-3x=3-1[/tex]
[tex]-2x=2[/tex]
[tex]x= \frac{2}{-2} [/tex]
[tex]x=-1[/tex]
Este valor não satisfaz a condição de existência, portanto:
/
Solução: {O}
/
Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.