O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

a derivada primeira de y= sen(4x)

Sagot :

y = sen(4x)
Fazendo u = 4x, temos
y = sen(u)
y' é a derivada primeira de y, logo
y = sen(u)
y' = u'.sen'(u), onde sen'(u) = cos(u), daí
u' = derivada primeira de 4x = 4
sen'(u) = cos(u) = cos(4x), daí
y' = 4cos(4x)
derivada primeira de y = sen(x) é 4cos(4x)

A derivada da função y = sen(4x) em relação a x é 4.cos(4x).

Devemos utilizar a regra da cadeia para calcular essa derivada. A regra da cadeia é definida através da expressão:

dy/dx = dy/du . du/dx

Neste caso, temos que:

y = sen(4x)

u = 4x

Substituindo 4x na função y, temos:

y = sen(u)

A derivada de y em relação a u será:

dy/du = cos(u)

A derivada de u em relação a x será:

du/dx = 4

Assim, a derivada de y em relação a x será:

dy/dx = 4.cos(u)

Substituindo u no resultado, obtemos

dy/dx = 4.cos(4x)

Leia mais em:

https://brainly.com.br/tarefa/227770

View image andre19santos
Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.