O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
a1 = 3
a2 = 6
q = a2/a1
q = 6/3
q = 2
Sn = 765
n = ...
Sn = a1.(1-q^(n-1)) / 1-q
765 = 3.(1-2^(n-1) / 1-2
765/3 = (1-2^(n-1) / (-1)
(1-2^(n-1) = -255
-2^(n-1) = -255-1
-2^(n-1) = -256
2^(n-1) = 2^7
n-1 = 7
n = 7+1
n = 8
a2 = 6
q = a2/a1
q = 6/3
q = 2
Sn = 765
n = ...
Sn = a1.(1-q^(n-1)) / 1-q
765 = 3.(1-2^(n-1) / 1-2
765/3 = (1-2^(n-1) / (-1)
(1-2^(n-1) = -255
-2^(n-1) = -255-1
-2^(n-1) = -256
2^(n-1) = 2^7
n-1 = 7
n = 7+1
n = 8
A progressão geométrica (3, 6, ...) deve ter 8 termos.
A soma dos termos de uma progressão geométrica finita é definida pela fórmula [tex]S=\frac{a_1(q^n-1)}{q-1}[/tex], sendo:
- a₁ = primeiro termo
- q = razão
- n = quantidade de termos.
De acordo com o enunciado, a soma dos n termos da progressão geométrica (3, 6, ...) é igual a 765.
Observe que o primeiro termo é igual a a₁ = 3 e a razão é igual a q = 2.
Sendo assim, temos que:
765 = (3(2ⁿ - 1))/(2 - 1)
765 = 3(2ⁿ - 1)
255 = 2ⁿ - 1
2ⁿ = 256.
Perceba que o número 256 pode ser escrito como 2⁸. Então, 2ⁿ = 2⁸.
Temos aqui uma equação exponencial. Como as potências possuem bases iguais, então podemos igualar os expoentes.
Assim, concluímos que a quantidade de termos é igual a n = 8.
Exercício sobre progressão geométrica: https://brainly.com.br/tarefa/17887775

Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.