O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.

 Um professor de educação física organizou seus 210 alunos para formar um triângulo. Colocou um aluno na primeira linha, dois na segunda, três na terceira, e assim por diante. O número de linhas é:

 galera ajuda aí por favooor!



Sagot :

 

{1, 2, 3, ..., an }

Sn = 210    a1 = 1    r = 1       n = ?

Usando a formula do termo geral: an = a1 + (n – 1) x r

an = 1 + (n-1)1 = an  = n

Sn = (a1 + an )*n/2  = 210 = n/2*(1+n) = n2 + n – 420 = 0

n = -1 ± 41/2 = n’ = 21 (não convém) e n” = 20

20 linhas

PA = 1 ; 2 ; 3 ; 4 ; n 

a1 = 1 ; a2 = 2 ; a3 = 3 ; .... ; an = n

r = 1 ( razão )

Não esqueça das fórmulas da PA :

an = a1 + (n-1).r ----> Termo geral

Sn = (a1 + an ). n/2 ----> Soma dos termos

Utilizando a fórmula da soma dos termos da PA , e utilizando os dados fornecidos , temos :

210 = ( 1 + n ) . n/2

210.2 = n + n² ---> n² + n - 420 = 0 ( Eq. do 2º grau )

a=1 , b = 1 ; c = - 420

Delta = b² - 4.a.c = 1² - 4.1.(-420) = 1 + 1680 = 1681

n = (-b + - \/delta)/2.a = (-1+-\/1681)/2 = (-1+-41)/2

n' = ( -1+41)/2 = 40/2 = 20

n" = (-1-41)/2 = -42/2 = - 21 ( não serve pois é<0)

Logo , foram formadas 20 linhas