O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.
Sagot :
numero de autos: a
numero de bikes: b
b = 3a (bicicletas=triplo de carros)
Total de rodas: 4 cada carro + 2 cada bicicleta = 4a+2b = 130
Resolvendo a equação:
4a+2b=130, usando b=3a
4a+2.(3a)=130
4a+6a=130
10a=130
a=130/10 =13
b= 3a = 3.(13)=39
Há 13 carros e 39 bicicletas, total 52 veículos.
numero de bikes: b
b = 3a (bicicletas=triplo de carros)
Total de rodas: 4 cada carro + 2 cada bicicleta = 4a+2b = 130
Resolvendo a equação:
4a+2b=130, usando b=3a
4a+2.(3a)=130
4a+6a=130
10a=130
a=130/10 =13
b= 3a = 3.(13)=39
Há 13 carros e 39 bicicletas, total 52 veículos.
Existem no pátio 13 automóveis e 39 bicicletas.
Nessa questão temos um sistema de equações do 1º grau.
Um sistema de equações nada mais é do que um conjunto de equações que apresentam mais de uma incógnita (x, y).
Para resolver um sistema desse tipo precisamos encontrar os valores que satisfaçam simultaneamente todas as equações.
Com os dados da questão, podemos montar o seguinte sistema de equações:
x = automóveis (4 rodas = 4x)
y = bicicletas (2 rodas = 2y)
4x + 2y = 130 (I)
y = 3x (I)
Substituindo a equação II em I, podemos resolver o sistema:
4x + 2y = 130
4x + 2(3x) = 130
4x + 6x = 130
10x = 130
x = 130/10
x = 13 carros
y = 3x
y = 3.13
y = 39 bicicletas
Existem no pátio 13 automóveis e 39 bicicletas.
Mais sobre o assunto em:
brainly.com.br/tarefa/16060650

Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.