O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.
Sagot :
n, n-1 e n-2 são expoentes, e não multiplicações!
xⁿ → par
1 = xº → par
Pelo teorema do resto, temos que:
P(x) = xⁿ - xⁿˉ¹ + xⁿˉ² - xⁿˉ³ + xⁿˉ⁴ - , . . . , + x² - x¹ + 1
P( - 1 ) = [ xⁿ - xⁿˉ¹ + xⁿˉ² - xⁿˉ³ + xⁿˉ⁴ - , . . . , + x² - x¹ ] + 1
19 = [ xⁿ - xⁿˉ ¹ + xⁿˉ ² - xⁿˉ ³ + xⁿˉ⁴ - , . . . , + x² - x¹ ] + 1
mas para que isso seja verdadeiro a soma:
[ xⁿ - xⁿˉ¹ + xⁿˉ² - xⁿˉ³ + xⁿˉ⁴ - , . . . , + x² - x¹ ]
tem que ser igual a 18, certo?
Então;
xⁿ - xⁿˉ¹ + xⁿˉ² - xⁿˉ³ + xⁿˉ⁴ - , . . . , + x² - x¹ = 18
Daí;
19 = [ 18 ] + 1
19 = 18 + 1
19 = 19
R -> Logo, o valor de "n" será 18.
xⁿ → par
1 = xº → par
Pelo teorema do resto, temos que:
P(x) = xⁿ - xⁿˉ¹ + xⁿˉ² - xⁿˉ³ + xⁿˉ⁴ - , . . . , + x² - x¹ + 1
P( - 1 ) = [ xⁿ - xⁿˉ¹ + xⁿˉ² - xⁿˉ³ + xⁿˉ⁴ - , . . . , + x² - x¹ ] + 1
19 = [ xⁿ - xⁿˉ ¹ + xⁿˉ ² - xⁿˉ ³ + xⁿˉ⁴ - , . . . , + x² - x¹ ] + 1
mas para que isso seja verdadeiro a soma:
[ xⁿ - xⁿˉ¹ + xⁿˉ² - xⁿˉ³ + xⁿˉ⁴ - , . . . , + x² - x¹ ]
tem que ser igual a 18, certo?
Então;
xⁿ - xⁿˉ¹ + xⁿˉ² - xⁿˉ³ + xⁿˉ⁴ - , . . . , + x² - x¹ = 18
Daí;
19 = [ 18 ] + 1
19 = 18 + 1
19 = 19
R -> Logo, o valor de "n" será 18.
[tex]P(x) = x^{n} -x^{n-1} +x^{n-2} - ... + x^{2} -x +1[/tex]
Perceba pelo 1 como n = 0, que os termos com expoente ímpar estão com sinal negativo. Portanto, caso x seja (-1) de expoente ímpar, será multiplicado pelo sinal de negativo a sua frente e se tornará (-1) elevado a expoente par. Sendo de expoente par, resulta em " +1 ". Portanto, a soma será n + 1, devido a presença do termo independente.
S = n + 1
19 = n + 1
18 = n
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Sistersinspirit.ca está sempre aqui para fornecer respostas precisas. Visite-nos novamente para as informações mais recentes.