Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Explore nossa plataforma de perguntas e respostas para encontrar soluções confiáveis de uma ampla gama de especialistas em diversas áreas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

2,131616... em dízima periódica?

Sagot :

.

[tex]\LARGE\green{\boxed{\rm~~~\gray{2,13\overline{16}}~\pink{=}~\blue{ \dfrac{21.103}{9.900} }~~~}}[/tex]

.

[tex]\bf\large\green{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad}}[/tex]

[tex]\green{\rm\underline{EXPLICAC_{\!\!\!,}\tilde{A}O\ PASSO{-}A{-}PASSO\ \ \ }}[/tex]✍

❄☃ [tex]\sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly})[/tex] ☘☀

.

☺lá, Bear, como tens passado nestes tempos de quarentena⁉ E os estudos à distância, como vão⁉ Espero que bem❗ Acompanhe a resolução abaixo, feita através de algumas manipulações algébricas. ✌

.

[tex]\LARGE\gray{\boxed{\sf\blue{ 2,13\overline{16} }}}[/tex]

.

☔ Quando trabalhamos com frações geratrizes devemos seguir basicamente cinco passos. Chamando nossa dízima periódica de X temos que:

.

  1. Identificar qual é o período;
  2. Multiplicar o nosso número X por uma potência de [tex]\sf 10^m[/tex] de forma que 1 único período da dízima fique do lado esquerdo da vírgula;
  3. Subtrair pelo nosso número X multiplicado por uma potência de [tex]\sf 10^n[/tex] de forma que a dízima esteja exatamente à direita da vírgula;
  4. Igualar a subtração à [tex]\sf (10^m - 10^n) \cdot x[/tex];
  5. Substituir os valores de X na esquerda da igualdade e encontrar o valor de X da direita da igualdade.

.

1)[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍

.

☔ Período: 16

.

2)[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍

.

➡ [tex]\large\blue{\text{$\sf x \cdot 10^4 $}}[/tex]

.

3)[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍

.

➡ [tex]\large\blue{\text{$\sf - x \cdot 10^2 $}}[/tex]

.

4)[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍

.

➡ [tex]\large\blue{\text{$\sf = (10^4 - 10^2) \cdot x $}}[/tex]

.

5)[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍

.

➡ [tex]\large\blue{\text{$\sf x \cdot 10^4 - x \cdot 10^2 = (10^4 - 10^2) \cdot x $}}[/tex]

➡ [tex]\large\blue{\text{$\sf 21.316,\overline{16} - 213,\overline{16} = 9.900 \cdot x $}}[/tex]

➡ [tex]\large\blue{\text{$\sf 21.316 + 0,\overline{16} - 213 - 0,\overline{16} = 9.900 \cdot x $}}[/tex]

➡ [tex]\large\blue{\text{$\sf 21.316 - 213 + 0,\overline{16} - 0,\overline{16} = 9.900 \cdot x $}}[/tex]

.

☔ Este é o momento da mágica em que a dízima "desaparece"

.

➡ [tex]\large\blue{\text{$\sf 21.103 = 9.900 \cdot x $}}[/tex]

➡ [tex]\large\blue{\text{$\sf x = \dfrac{21.103}{9.900} $}}[/tex]

.

☔ Para encontrarmos a forma irredutível desta fração podemos fazer uma fatoração conjunta de ambos os termos e observar qual é o M.D.C. deles através dos fatores primos que dividem ambos simultaneamente . Neste caso, em que o número 21.103 possui uma fatoração mais trabalhosa, vamos fatorar o 9.900 e analisar se algum de seus fatores divide 21.103

.

[tex]\sf\large\blue{\begin{array}{cc|cl}&&&\sf\underline{~F~}\\&\\9.900&&&2\\&&&\\4.950&&&2\\&&&\\2.475&&&3\\&&&\\825&&&3\\&&&\\275&&&5\\&&&\\55&&&5\\&&&\\11&&&11\\&&&\\1&&&\gray{\boxed{\LARGE\blue{\text{$\sf 2^2 \cdot 3^2 \cdot 5^2 \cdot 11$}}}}\\\end{array}}[/tex]

.

☔ Lembrando que a notação ∤ significa "não divide" então temos que

.

➡ 2 ∤ 21.103

➡ 3 ∤ 21.103

➡ 5 ∤ 21.103

➡ 11 ∤ 21.103

.

☔ Portanto, sendo 21.103 e 9.900 primos entre si temos que esta é a fração geratriz irredutível.

.

[tex]\LARGE\green{\boxed{\rm~~~\gray{2,13\overline{16}}~\pink{=}~\blue{ \dfrac{21.103}{9.900} }~~~}}[/tex] ✅

.

.

.

.

[tex]\bf\large\red{\underline{\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]☁

☕ [tex]\bf\Large\blue{Bons\ estudos.}[/tex]

([tex]\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}[/tex]) ☄

[tex]\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX[/tex]✍

❄☃ [tex]\sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly})[/tex] ☘☀

.

.

.

.

[tex]\gray{"Absque~sudore~et~labore~nullum~opus~perfectum~est."}[/tex]

View image PhillDays

Resposta:

sim, é uma dízima, podemos obter a fração do seguinte modo:

x= 2,131616 ...

100.x= 213,1616...

-    x = -    2,1316...

99.x= 211,03

99.x= 211 +0,03

99.x= 211 +3/100 tirando  m.m.c.= 100

9900.x= 21100 +3

x=21103/9900

Explicação passo-a-passo:

Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.