O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Descubra respostas abrangentes para suas perguntas de profissionais experientes em nossa plataforma amigável. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas.

— Todos jornais são carros. Alguns discos não são carros. Logo alguns discos não são jornais.

— Nenhum selo é gafanhoto. Alguns elefantes são selos. Logo alguns elefantes não são gafanhoto.



Apenas a primeira lógica é correta.

Apenas a segunda lógica é correta.

As duas lógicas são corretas.

Nenhuma das lógicas é correta.


Sagot :

⠀⠀☞ Ambos os silogismos estão corretos, o que nos leva à opção c). ✅

⠀⠀No primeiro silogismo temos 3 conjuntos: jornais (J), carros (C) e discos (D).

  • A primeira premissa nos diz: J ⊂ C (ou seja, J é um sub-conjunto de C);

  • A segunda premissa nos diz: ∈ D ꓵ C (ou seja, parte do conjunto D é uma intersecção com o conjunto C) e ∈ D ꓵ ~C (ou seja, parte do conjunto D é uma intersecção com ~C);

  • A inferência lógica nos diz: ∈ D ꓵ ~J (ou seja, parte do conjunto D é uma intersecção com ~J). Sabemos que isto é verdadeiro pois J ⊂ C, e da segunda premissa temos que ∈ D ꓵ ~C. ✅

⠀⠀Observe que a informação que não temos é se existe algum disco que é jornal, ou seja, não sabemos se ∈ D ꓵ J, pois não ser carro não implica necessariamente em ser jornal. As três opções para os conjuntos, segundo as premissas, são:

[tex]\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\bezier(0,0)(0.17,2.77)(3,3)\bezier(6,0)(5.77,2.77)(3,3)\bezier(0,0)(0.17,-2.77)(3,-3)\bezier(6,0)(5.77,-2.77)(3,-3)\put(-2.7,-2){\Huge$\sf C$}\put(5.1,-1.9){\Huge$\sf D$}\put(-1,0){\circle{2}}\put(-1.7,-0.7){\Huge$\sf J$}\end{picture}[/tex]

ou

[tex]\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\bezier(0,0)(0.17,2.77)(3,3)\bezier(6,0)(5.77,2.77)(3,3)\bezier(0,0)(0.17,-2.77)(3,-3)\bezier(6,0)(5.77,-2.77)(3,-3)\put(-2.7,-2){\Huge$\sf C$}\put(5.1,-1.9){\Huge$\sf D$}\put(0,0){\circle{2}}\put(-0.7,-0.7){\Huge$\sf J$}\end{picture}[/tex]

ou

[tex]\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\bezier(0,0)(0.17,2.77)(3,3)\bezier(6,0)(5.77,2.77)(3,3)\bezier(0,0)(0.17,-2.77)(3,-3)\bezier(6,0)(5.77,-2.77)(3,-3)\put(-2.7,-2){\Huge$\sf C$}\put(5.1,-1.9){\Huge$\sf D$}\put(1,0){\circle{2}}\put(0.3,-0.7){\Huge$\sf J$}\end{picture}[/tex]

[tex]\sf (Estas~imagens~n\tilde{a}o~s\tilde{a}o~visualiz\acute{a}veis~pelo~App~Brainly[/tex] ☹ )

⠀⠀No segundo silogismo temos três conjuntos: selos (S), gafanhotos (G) e elefantes (E).

  • A primeira premissa nos diz que ∉ S ꓵ G (ou seja, não existe nenhum elemento em comum entre os conjuntos S e G). Isto é o mesmo que dizer que S ⊂ ~G (ou seja, S é um sub-conjunto de ~G);

  • A segunda premissa nos diz que ∈ E ꓵ S (ou seja, parte do conjunto E é uma intersecção com o conjunto S) e ∈ E ꓵ ~S (ou seja, parte do conjunto E é uma intersecção com ~S);

  • A inferência lógica nos diz: ∈ E ꓵ ~G (ou seja, parte do conjunto E é uma intersecção com ~G). Sabemos que isto é verdadeiro pois S ⊂ ~G, e da segunda premissa temos que ∈ E ꓵ S. ✅

⠀⠀Observe que a informação que não temos é se existe algum elefante que é gafanhoto, ou seja, não sabemos se ∈ E ꓵ G, pois não ser selo não implica necessariamente em ser gafanhoto. As três opções para os conjuntos, segundo as premissas, são:

[tex]\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\bezier(0,0)(0.17,2.77)(3,3)\bezier(6,0)(5.77,2.77)(3,3)\bezier(0,0)(0.17,-2.77)(3,-3)\bezier(6,0)(5.77,-2.77)(3,-3)\put(-2.7,-2){\Huge$\sf S$}\put(5.1,-1.9){\Huge$\sf E$}\put(7,0){\circle{2}}\put(7,0.2){\Huge$\sf G$}\end{picture}[/tex]

ou

[tex]\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\bezier(0,0)(0.17,2.77)(3,3)\bezier(6,0)(5.77,2.77)(3,3)\bezier(0,0)(0.17,-2.77)(3,-3)\bezier(6,0)(5.77,-2.77)(3,-3)\put(-2.7,-2){\Huge$\sf S$}\put(5.1,-1.9){\Huge$\sf E$}\put(6,0){\circle{2}}\put(6,0.2){\Huge$\sf G$}\end{picture}[/tex]

ou

[tex]\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\bezier(-3,0)(-2.77,2.77)(0,3)\bezier(3,0)(2.77,2.77)(0,3)\bezier(-3,0)(-2.77,-2.77)(0,-3)\bezier(3,0)(2.77,-2.77)(0,-3)\bezier(0,0)(0.17,2.77)(3,3)\bezier(6,0)(5.77,2.77)(3,3)\bezier(0,0)(0.17,-2.77)(3,-3)\bezier(6,0)(5.77,-2.77)(3,-3)\put(-2.7,-2){\Huge$\sf S$}\put(5.1,-1.9){\Huge$\sf E$}\put(5,0){\circle{2}}\put(5,0.2){\Huge$\sf G$}\end{picture}[/tex]

[tex]\sf (Estas~imagens~n\tilde{a}o~s\tilde{a}o~visualiz\acute{a}veis~pelo~App~Brainly[/tex] ☹ )  

_________________________________

⠀⠀☀️ Leia mais sobre intersecções entre conjuntos:

✈ https://brainly.com.br/tarefa/38384311

✈ https://brainly.com.br/tarefa/38342010  

_______________________________✍

_______________________________☁

⠀⠀⠀⠀☕ Bons estudos.

(Dúvidas nos comentários) ☄

__________________________[tex]\LaTeX[/tex]✍

❄☃ [tex]\sf(\gray{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly})[/tex] ☘☀

Absque sudore et labore nullum opus perfectum est.

View image PhillDays
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.