O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Experimente a conveniência de obter respostas confiáveis para suas perguntas de uma vasta rede de especialistas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

The following three impedances are connected in series across 40 volts, 20 kHz supply, that is, a resistance of 8 ohms, a coil of inductance 130 microHenries and 5 ohm resistance, and a 10 ohm resistor in series with a 0,25 microFarads​ capacitor. Calculate (a) The circuit current, ( b) The phase angle, (c)The voltage drop across each impedance​

Sagot :

Resposta:

The circuit diagram is shown in Fig. 15.16(a). Since the total circuit resistance is 8+5+108+5+10, i.e. 23\, \Omega23Ω, an equivalent circuit diagram may be drawn as shown in Fig. 15.16(b).

Inductive reactance,

X_{L} = 2\pi fLXL=2πfL

= 2\pi (20 \times 10^{3})(130 \times 10^{-6})=16.34\, \Omega=2π(20×103)(130×10−6)=16.34Ω

Capacitive reactance,

X_{C} = \frac{1}{2\pi fC}=\frac{1}{2\pi (20 \times 10^{3})(0.25 \times 10^{-6})}XC=2πfC1=2π(20×103)(0.25×10−6)1

= 31.83\, \Omega=31.83Ω

Since X_{C} > X_{L}XC>XL, the circuit is capacitive (see phasor diagram in Fig. 15.12(c)).

X_{C} \, -\, X_{L} = 31.83\, -\, 16.34 = 15.49\, \OmegaXC−XL=31.83−16.34=15.49Ω

(a) Circuit impedance, Z = \sqrt{R^{2} + (X_{C}\, -\, X_{L})^{2}} = \sqrt{23^{2} + 15.49^{2}} = 27.73\, \OmegaZ=R2+(XC−XL)2=232+15.492=27.73Ω

Circuit current, I= V/Z= 40/27.73=1.442\, AI=V/Z=40/27.73=1.442A

From Fig. 15.12(c), circuit phase angle

\phi = \tan^{-1}\, (\frac{X_{C}\, -\, X_{L}}{R})ϕ=tan−1(RXC−XL)

i.e.

\phi = \arctan^{-1}\, (\frac{15.49}{23})=33.96^{\circ}\: \textbf{leading}ϕ=arctan−1(2315.49)=33.96∘leading

 

(b) From Fig. 15.16(a),

V_{1} = IR_{1} = (1.442)(8) = 11.54\, VV1=IR1=(1.442)(8)=11.54V

V_{2} = IZ_{2} = I\sqrt{5^{2}+16.34^{2}}V2=IZ2=I52+16.342

=(1.442)(17.09) = 24.64\, V=(1.442)(17.09)=24.64V V_{3} = IZ_{3}=I\sqrt{10^{2}+31.83^{2}}V3=IZ3=I102+31.832 =(1.442)(33.36) = 48.11\, V=(1.442)(33.36)=48.11V

The 40\, V40V supply voltage is the phasor sum of V_{1},\, V_{2}V1,V2 and V_{3}V3