Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.

Uma sala tem 6 lampadas, com interruptores independentes. De quantos modos pode-se ilumina-la, se pelo menos uma das lampadas deve ficar acessa?



Sagot :

Para cada lâmpada, há [tex]2[/tex] possibilidades: estar acesa ou apagada.

 

Desta maneira, existem [tex]2^6-1=64-1=63[/tex] modos de iluminar a sala, excluindo-se a possibilidade em que todas as lâmpadas estão apagadas.

Existem 63 maneiras de iluminar esta sala.

Se pelo menos uma lâmpada deve estar acesa, temos que esta sala pode ser iluminada com 1, 2, 3, 4, 5 ou 6 lâmpadas, ou seja, devemos somar todos os grupos diferentes que podem ser formados com estes números de lâmpadas. Utilizando a combinação simples, temos:

nCx = n!/(n-x)!x!

O total de possibilidades será igual a:

P = 6C1 + 6C2 + 6C3 + 6C4 + 6C5 + 6C6

P = 6!/(6-1)!1! + 6!/(6-2)!2! + 6!/(6-3)!3! + 6!/(6-4)!4! + 6!/(6-5)!5! + 6!/(6-6)!6!

P = 6.5!/5! + 6.5.4!/4!.2.1 + 6.5.4.3!/3!.3.2.1 + 6.5.4!/2.1.4! + 6.5!/5! + 6!/6!

P = 6 + 15 + 20 + 15 + 6 + 1

P = 63

Leia mais em:

https://brainly.com.br/tarefa/9076834

View image andre19santos
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.