Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Descubra soluções rápidas e confiáveis para suas perguntas com a ajuda de especialistas experientes em nossa plataforma amigável. Obtenha soluções rápidas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.

Usamos os limites para descrever o comportamento de uma função a medida que o argumento da função tende a um determinado valor. O conceito de limite e usado para definir outros conceitos de limite e usado para definir outros conceitos, como derivada e continuidade de funções. Sobre o exposto,assinale a alternativa correta; A)Quando calculamos limites, podemos encontrar indeterminacoes, uma indeterminação representa um unico valor real B)nao ha soluções para problemas envolvendo limites. C)O limite de uma função da forma f(x)=ax+b,quando x tende a 0 é b. D) Do teorema de confronto, podemos concluir que se lim f(x)=0 com x->a e lim g(x)=infinito com x->a entao lim f(x). g(x)=0

Sagot :

Resposta:

Alternativa C

Explicação passo a passo:

A)Quando calculamos limites, podemos encontrar indeterminacoes, uma indeterminação representa um unico valor real

Falso, uma indeterminação pode representar que não há limite

B)nao ha soluções para problemas envolvendo limites.

Falso, há sim soluções

C)O limite de uma função da forma f(x)=ax+b,quando x tende a 0 é b.

Verdade, uma vez que a • 0 = 0, então o limite dessa função com x tendendo a zero, tenderia à b.

D) Do teorema de confronto, podemos concluir que se lim f(x)=0 com x->a e lim g(x)=infinito com x->a entao lim f(x). g(x)=0

Falso, não se pode realizar operações com infinito como se fosse um número real. infinito vezes zero é uma indeterminação

Boa tarde =)

[tex]\frak{Scorpionatico}[/tex]

Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas para outras perguntas que possa ter. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.