O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.

Sejam x1 = a, x2 = 4 e x3 = 8 valores assumidos por uma variável quantitativa discreta. Se a variância de x1, x2 e x3 é igual a 14/3, então a soma dos possíveis valores para a é igual a quanto?
A) 13,8.
B) 13,5.
C) 12.
D) 12,5.


Sagot :

Resposta:

Olá boa noite!

A variância é uma medida de dispersão dada pela expressão:

S² = ∑ (Xi - M)² / n

Onde M é a média do conjunto de dados que é dada por:

M = (x1 + x2 + x3) / 3

Os valores da variável aleatória são:

x1 = a

x2 = 4

x3 = 8

A média será:

M = (a + 4 + 8)/3

E a variância é igual a S² = 14/3

Então:

14/3 = [ (a - M)² + (4 - M)² + (8 - M)² ] / 3

14 = a² - 2M + M² + 16 - 8M + M² + 64 - 16M + M²

14 = a² + 16 + 64 - 26M + 3M²

14 = a² + 80 - 26M + 3M²

Devemos agora substituir M por (a + 4 + 8)/3

14 = a² + 80 - 26(a + 12)/3 + 3(a + 4 + 8)/3

14 = a² + 80 - (26a - 312)/3 + a + 4 + 8

Multiplicando todos os termos por 3:

72 = 3a² + 240 - 26a - 312 + a + 12

3a² - 25a - 60 = 72

3a² -25a - 132 = 0

Resolvendo a equação do segundo grau:

Δ = 625 - 4*3*(-132)

Δ = 625 + 1584

Δ = 625 + 1584

Δ = 2209

√Δ = √2209 = 47

a = (25 + 47)/6

a = 72/6

a = 12

Logo o valor de "a" é 12.

Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.