Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Determine o coeficiente angular, linear e a equação reduzida da reta que passa pelos pontos: a) (1,2) e (2,5) b) (-1,2) e (-2,1) c) (0,3) e (-1,4) d)(-3,-2) e (2,-3)


Determine O Coeficiente Angular Linear E A Equação Reduzida Da Reta Que Passa Pelos Pontos A 12 E 25 B 12 E 21 C 03 E 14 D32 E 23 class=

Sagot :

Resposta:

a)

coeficiente angular m = 3

coeficiente linear n = -1

equação reduzida y = 3x - 1

b)

coeficiente angular m = 1

coeficiente linear n = 3

equação reduzida y = x + 3

c)

coeficiente angular m = -1

coeficiente linear n = 3

equação reduzida y = -x + 3

d)

coeficiente angular m = -1/15

coeficiente linear n = -13/15

equação reduzida y = (-x - 13)/5

Explicação passo a passo:

Vamos utilizar duas fórmulas:

1) m = (y2 - y1)/(x2 - x1)

2) A equação reduzida da reta é dada pela fórmula: y = mx + n na qual o coeficiente angular é dado por m e o coeficiente linear é dado por n.

Questão a) (1, 2) e (2, 5)

m = (y2 - y1)/(x2 - x1) = (5 - 2)/(2 - 1) = 3/1 = 3

3 = (y - 2)/(x - 1) => (y - 2) = 3(x - 1) => y = 3x - 1

coeficiente angular m = 3

coeficiente linear n = -1

equação reduzida y = 3x - 1

Questão b) (-1, 2) e (-2, 1)

m = (y2 - y1)/(x2 - x1) = (1 - 2)/(-2 + 1) = -1/-1 = 1

1 = (y - 2)/(x + 1) => (y - 2) = 1(x + 1) => y = x + 3

coeficiente angular m = 1

coeficiente linear n = 3

equação reduzida y = x + 3

Questão c) (0, 3) e (-1, 4)

m = (y2 - y1)/(x2 - x1) = (4 - 3)/(-1 + 0) = 1/-1 = -1

-1 = (y - 3)/(x - 0) => (y - 3) = -1(x) => y = -x + 3

coeficiente angular m = -1

coeficiente linear n = 3

equação reduzida y = -x + 3

Questão d) (-3, -2) e (2, -3)

m = (y2 - y1)/(x2 - x1) = (-3 + 2)/(2 + 3) = -1/5

-1/5 = (y + 2)/(x + 3) => 5(y + 2) = -1(x + 3) => 5y + 10 = -x - 3 => y = (-x - 13)/5

coeficiente angular m = -1/15

coeficiente linear n = -13/15

equação reduzida y = (-x - 13)/5