O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Descubra soluções rápidas e confiáveis para suas perguntas com a ajuda de especialistas experientes em nossa plataforma amigável. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.

calcule as raizes da funçao f(×)=x2−2x+2 ​

Sagot :

✅ Após resolver os cálculos, concluímos que o conjunto solução da referida função do segundo grau dependerá do seu conjunto universo. Desse modo, temos duas possíveis soluções:

           [tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \textrm{Se}\:f(x):\:\:\mathbb{R}\to\mathbb{R}\:\:\Longrightarrow S = \emptyset\:\:\:}}\end{gathered}$}[/tex]

[tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \textrm{Se}\:f(x):\:\:\mathbb{C}\to\mathbb{C}\:\:\:\Longrightarrow S = \{1 - i,\,1 + i\}\:\:\:}}\end{gathered}$}[/tex]

Seja a função:

        [tex]\Large\displaystyle\text{$\begin{gathered} f(x) = x^{2} - 2x + 2\end{gathered}$}[/tex]

Cujos coeficientes são:

                      [tex]\Large\begin{cases} a = 1\\b = -2\\c = 2\end{cases}[/tex]

OBSERVAÇÃO: Para trabalhar com funções somos obrigados a informar o conjunto universo ou o conjunto domínio e o conjunto contradomínio. Pois, o conjunto solução da função será fortemente influenciado por esses conjuntos.

Para calcular as raízes da equação do segundo grau fazemos:

     [tex]\Large\displaystyle\text{$\begin{gathered} x = \frac{-b\pm\sqrt{b^{2} - 4ac}}{2 a}\end{gathered}$}[/tex]

         [tex]\Large\displaystyle\text{$\begin{gathered} = \frac{-(-2)\pm\sqrt{(-2)^{2} - 4\cdot1\cdot2}}{2\cdot1}\end{gathered}$}[/tex]

          [tex]\Large\displaystyle\text{$\begin{gathered} = \frac{2\pm\sqrt{4 - 8}}{2}\end{gathered}$}[/tex]

          [tex]\Large\displaystyle\text{$\begin{gathered} = \frac{2\pm\sqrt{-4}}{2}\end{gathered}$}[/tex]

Como não foi informado o conjunto universo, tampouco o conjunto domínio da função, então podemos ter duas possíveis soluções para esta função:

  • Se a função estiver definida nos reais, temos:

             [tex]\LARGE\begin{cases} x' = \frac{2 - \sqrt{-4}}{2} = \nexists\\x'' = \frac{2 + \sqrt{-4}}{2} = \nexists\end{cases}[/tex]

         Portanto o conjunto solução da função definida nos reais é:

                             [tex]\Large\displaystyle\text{$\begin{gathered} S = \emptyset\end{gathered}$}[/tex]

   

  • Se a função estiver definida nos complexos temos:

         [tex]\LARGE\begin{cases} x' = \frac{2 - \sqrt{-4}}{2} = \frac{2 - 2i}{2} = 1 - i\\x'' = \frac{2 + \sqrt{-4}}{2} = \frac{2 + 2i}{2} = 1 + i\end{cases}[/tex]

        Portanto o conjunto solução da função definida nos complexos é:

                  [tex]\Large\displaystyle\text{$\begin{gathered} S = \{1 - i,\,1 + i\}\end{gathered}$}[/tex]  

[tex]\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}[/tex]

Saiba mais:

  1. https://brainly.com.br/tarefa/52570501
  2. https://brainly.com.br/tarefa/52844240
  3. https://brainly.com.br/tarefa/53143775
  4. https://brainly.com.br/tarefa/53209289
  5. https://brainly.com.br/tarefa/53239943
  6. https://brainly.com.br/tarefa/48443311
  7. https://brainly.com.br/tarefa/53323963
  8. https://brainly.com.br/tarefa/53338335
  9. https://brainly.com.br/tarefa/53364051
  10. https://brainly.com.br/tarefa/53364017
  11. https://brainly.com.br/tarefa/53363650
View image solkarped
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.