Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade de especialistas dedicados em nossa plataforma de perguntas e respostas. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.

dez candidatos concorrem a cinco vagas para um curso. quando grupos diferentes de aprovados podem ser formados ?
a) 120
b) 150
c) 130
d) 140
e) n.d.a.


Sagot :

Os candidatos podem ser aprovados de 252 jeitos diferentes - alternativa e.

Combinação simples

Quando necessita-se fazer uma combinação onde a ordem não importa, utiliza-se a combinação simples. Para isto, utiliza-se a fórmula:

[tex]$\displaystyle Cn,p= \frac{n!}{p!(n-p)!} $[/tex], onde:

  • n é o número total de elementos contidos no conjunto;
  • p é o total de elementos contidos no subconjunto.

Resolução do Exercício

Dados do enunciado:

  • Número total de candidatos (n) = 10;
  • Número total de vagas (p) = 5

Logo, a quantidade de grupos diferentes que poderá ocorrer a aprovação é:

[tex]$\displaystyle C10,5= \frac{10!}{5!(10-5)!} $[/tex]

[tex]$\displaystyle C10,5= \frac{10!}{5!*5!} $[/tex]

[tex]$\displaystyle C10,5= \frac{10*9*8*7*6*5!}{5!*5!} $[/tex]

Cortando o 5! presente no numerador e no denominador da fração:

[tex]$\displaystyle C10,5= \frac{10*9*8*7*6}{5!} $[/tex]

[tex]$\displaystyle C10,5= \frac{3024}{120} $[/tex]

C10,5 = 252 maneiras.

Para melhor fixação do conteúdo você pode ver outra pergunta sobre combinação simples no link: brainly.com.br/tarefa/31661661

Bons estudos!

#SPJ1

View image aieskagomes
Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.