O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.

x² + 8 x - 9 = 0 como faz o calculo ?



Sagot :

Equação de 2° grau...

 

 

x² + 8 x - 9 = 0,

 

∆= b² -4.a.c

∆= 8² - 4.1.(-9)

∆= 64 +36

∆= 100

 

x=   -b +/-  [tex]\sqrt{Δ}[/tex]         OBS: Esse Î é o mesmo que Δ, ok? 

                 2.a

x=  -8+/- 10  

           2

x'=   2   = 1

       2

x''=   -18   = -9

         2

 

 

 x'= 1 e x''=9

 

Espero ter ajudado, se precisar de mais alguma coisa é só falar, escolhe como a melhor resposta, pfvr? Se quizer tirar duvias, é spo adc!  

 

 

Para realizar o cálculo desta equação de segundo grau utilizaremos a fórmula de Bhaskara que nos dá como solução as raízes: x1= 1 e x2= -9

Precisaremos relembrar a fórmula de Bhaskara para uma equação de segundo grau para encontrarmos as raízes reais desta equação.

O que é a fórmula de Bhaskara?

É uma ferramenta matemática que possui a capacidade de resolver e encontrar as raízes reais de uma equação de segundo grau. Uma equação de segundo grau tem como fórmula geral: ax²+bx+c=0 onde, a, b, c são os coeficientes.

Para encontrarmos as raízes reais de uma equação de segundo grau utilizamos a fórmula de Bhaskara. Primeiramente calculamos o determinante ou delta da equação (Δ):

                                     

                                       Δ = [tex]b^{2} -4.a.c[/tex]

Em seguida calculamos as raízes reais desta equação da seguinte forma:

                                 

                                     x = (-b±√Δ)/2a

Tendo revisado esses conceitos, conseguimos resolver a situação problema

O enunciado nos dá a equação com os seguintes coeficientes: a=1, b=8 e c= -9. Aplicando o determinante temos que:

 

                                    Δ= 64 - [4.1.(-9)]

                                       Δ= 64 + 36

                                           Δ= 100

Fazendo o cálculo das raízes reais (x1 e x2) teremos:

                              x1 = (-b+√Δ)/2a

                              x1= -8 +10 / 2

                                       x1 = 1

                              x2= (-b -√Δ)/2a

                               x2= -8 -10 / 2

                                     x2 = -9

Desta forma temos as duas raízes reais (x1 e x2):

                                     

                                     x1 = 1

                                   x2 = -9

Aprenda mais sobre equações de segundo grau, aqui: brainly.com.br/tarefa/292422

#SPJ2

Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.