O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

Dê um exemplo, se possível, de uma transformação linear tal que
Nuc(T) = ((x; y) pertence R²; x - 2y = 0) e Im(T) = ((x; y) pertence R²; x = y)



Sagot :

Celio
Oi, Jr.

Um exemplo de transformação linear que satisfaz as condições do enunciado é  [tex]T:\mathbb{R}^2 \rightarrow \mathbb{R}^2\ |\ T(x,y)=(x-2y,x-2y),[/tex]  pois:

[tex]\text{(i) }T(x,y)=(x-2y,x-2y)=(0,0) \Leftrightarrow x=2y \Rightarrow \\\\ \boxed{Nuc(T)=\{(x,y)\in\mathbb{R}^2|x=2y\}=\{(x,y)\in\mathbb{R}^2|x-2y=0\}}[/tex]

[tex]\text{(ii) }\forall (u,v) \in Im(T),\text{temos que }u=v,\text{pois, como }\\T(x,y)=(x-2y,x-2y) \Rightarrow u=x-2y\text{ e }v=x-2y\\ \therefore \boxed{Im(T)=\{(u,v)\in\mathbb{R}^2\ |\ u=v\}}[/tex]