Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
Temos que lembrar como fazer distância de ponto a ponto, que calculamos da seguinte forma:
[tex]\boxed{d = \sqrt{(X_{b}-X_{a})^{2} + (Y_{b}-Y_{a})^{2}}}[/tex]
Agora vamos substituir os valores:
[tex]d = \sqrt{(X_{b}-X_{a})^{2} + (Y_{b}-Y_{a})^{2}} \\\\ \sqrt{(2-(m-1))^{2} + (-m-3)^{2}} = 6 \\\\ \sqrt{(2-m+1)^{2} + (-m-3)^{2}} = 6 \\\\ \sqrt{(3-m+)^{2} + (-m-3)^{2}} = 6 \\\\ elevamos \ ao \ quadrado \ para \ sumir \ com \ a \ raiz \\\\ (\sqrt{(3-m)^{2} + (-m-3)^{2}})^{2} = 6^{2} \\\\ (3-m)^{2} + (-m-3)^{2}} = 36 \\\\ 9 - 6m + m^{2} + m^{2} + 6m + 9 = 36[/tex]
[tex]9 - 6m + m^{2} + m^{2} + 6m + 9 -36 = 0 \\\\ 2m^{2} - 18 = 0 \\\\ \Delta = b^{2} - 4 \cdot a \cdot c \\\\ \Delta = 0^{2} - 4 \cdot (2) \cdot (-18) \\\\ \Delta = 0+144 \\\\ \Delta = 144[/tex]
[tex]2m^{2} - 18 = 0 \\\\ m = \frac{-b \pm \sqrt{\Delta}}{2 \cdot a} \\\\ m = \frac{0 \pm \sqrt{144}}{2 \cdot 2} \\\\ m = \frac{0 \pm 12}{4} \\\\\\ m' = \frac{0 + 12}{4} = \frac{12}{4} = \boxed{3} \\\\ m'' = \frac{0 - 12}{4} = \frac{-12}{4} = \boxed{-3}[/tex]
Vamos voltar e testar os valores. Em ambos, a distância obrigatoriamente deve dar 6.
[tex]\rightarrow m = 3 \\ a(m-1; 3) \ e \ b(2; -m) \\ a(3-1; 3) \ e \ b(2; -3) \\ a(2; 3) \ e \ b(2; -3) \\\\ d = \sqrt{(X_{b}-X_{a})^{2} + (Y_{b}-Y_{a})^{2}} \\\\ d = \sqrt{(2-2)^{2} + (-3-3)^{2}} \\\\ d = \sqrt{0 + (-6)^{2}} \\\\ d = \sqrt{36} \\\\ \boxed{d = 6}[/tex]
Testando o segundo:
[tex]\rightarrow m = -3 \\ a(m-1; 3) \ e \ b(2; -m) \\ a(-3-1; 3) \ e \ b(2; -(-3)) \\\ a(-4; 3) \ e \ b(2; 3) \\\\ d = \sqrt{(X_{b}-X_{a})^{2} + (Y_{b}-Y_{a})^{2}} \\\\ d = \sqrt{(2-(-4))^{2} + (3-3)^{2}} \\\\ d = \sqrt{(2+4)^{2} + 0} \\\\ d = \sqrt{(6)^{2}} \\\\ d = \sqrt{36} \\\\ \boxed{d = 6}[/tex]
[tex]\therefore \boxed{\boxed{m = 3} \ e \ \boxed{m = -3}}[/tex]
[tex]\boxed{d = \sqrt{(X_{b}-X_{a})^{2} + (Y_{b}-Y_{a})^{2}}}[/tex]
Agora vamos substituir os valores:
[tex]d = \sqrt{(X_{b}-X_{a})^{2} + (Y_{b}-Y_{a})^{2}} \\\\ \sqrt{(2-(m-1))^{2} + (-m-3)^{2}} = 6 \\\\ \sqrt{(2-m+1)^{2} + (-m-3)^{2}} = 6 \\\\ \sqrt{(3-m+)^{2} + (-m-3)^{2}} = 6 \\\\ elevamos \ ao \ quadrado \ para \ sumir \ com \ a \ raiz \\\\ (\sqrt{(3-m)^{2} + (-m-3)^{2}})^{2} = 6^{2} \\\\ (3-m)^{2} + (-m-3)^{2}} = 36 \\\\ 9 - 6m + m^{2} + m^{2} + 6m + 9 = 36[/tex]
[tex]9 - 6m + m^{2} + m^{2} + 6m + 9 -36 = 0 \\\\ 2m^{2} - 18 = 0 \\\\ \Delta = b^{2} - 4 \cdot a \cdot c \\\\ \Delta = 0^{2} - 4 \cdot (2) \cdot (-18) \\\\ \Delta = 0+144 \\\\ \Delta = 144[/tex]
[tex]2m^{2} - 18 = 0 \\\\ m = \frac{-b \pm \sqrt{\Delta}}{2 \cdot a} \\\\ m = \frac{0 \pm \sqrt{144}}{2 \cdot 2} \\\\ m = \frac{0 \pm 12}{4} \\\\\\ m' = \frac{0 + 12}{4} = \frac{12}{4} = \boxed{3} \\\\ m'' = \frac{0 - 12}{4} = \frac{-12}{4} = \boxed{-3}[/tex]
Vamos voltar e testar os valores. Em ambos, a distância obrigatoriamente deve dar 6.
[tex]\rightarrow m = 3 \\ a(m-1; 3) \ e \ b(2; -m) \\ a(3-1; 3) \ e \ b(2; -3) \\ a(2; 3) \ e \ b(2; -3) \\\\ d = \sqrt{(X_{b}-X_{a})^{2} + (Y_{b}-Y_{a})^{2}} \\\\ d = \sqrt{(2-2)^{2} + (-3-3)^{2}} \\\\ d = \sqrt{0 + (-6)^{2}} \\\\ d = \sqrt{36} \\\\ \boxed{d = 6}[/tex]
Testando o segundo:
[tex]\rightarrow m = -3 \\ a(m-1; 3) \ e \ b(2; -m) \\ a(-3-1; 3) \ e \ b(2; -(-3)) \\\ a(-4; 3) \ e \ b(2; 3) \\\\ d = \sqrt{(X_{b}-X_{a})^{2} + (Y_{b}-Y_{a})^{2}} \\\\ d = \sqrt{(2-(-4))^{2} + (3-3)^{2}} \\\\ d = \sqrt{(2+4)^{2} + 0} \\\\ d = \sqrt{(6)^{2}} \\\\ d = \sqrt{36} \\\\ \boxed{d = 6}[/tex]
[tex]\therefore \boxed{\boxed{m = 3} \ e \ \boxed{m = -3}}[/tex]
Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Volte ao Sistersinspirit.ca para obter as respostas mais recentes e informações dos nossos especialistas.