Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa.

Teorema de Haplace, como que faz esse calculo?? O resultado da 159..
 -1 3 -1 4
  2 1  0 2 
  0 -1 2 3
  0  4 1 2
 Só não consigo montar o calculo..... 


Sagot :

Bom, podemos calcular o determinante de uma matriz escolhendo uma linha ou uma coluna, e multiplicar cada elemento pelo seu cofator.

Para facilitar nossos cálculos, escolheremos a linha/coluna que possui mais zeros, que no caso, é a primeira coluna.

[tex]\begin{bmatrix} -1 & 3 & -1 & 4 \\ 2 & 1 & 0 & 2 \\ 0 & -1 & 2 & 3 \\ 0 & 4 & 1 & 2 \end{bmatrix}[/tex]

Então vamos lá. Começamos com o primeiro elemento: iremos multiplica-lo pelo seu cofator. No que consiste o cofator? O cofator tem a seguinte fórmula:

[tex]\boxed{A_{ij} = (-1)^{i+j} \cdot D_{A}}[/tex]

Este "D" da fórmula, significa determinante do cofator, que é todos os elementos que restam excluindo a linha e a coluna do elemento que a gente está calculando. O cofator sempre é representado por letra maiúscula.

Vamos lá:

[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21}[/tex]

Vamos calcular o cofator de cada um separadamente.

[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{11} = (-1)^{1+1} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = (-1)^{2} \cdot \begin{vmatrix} 1 & 0 & 2 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{11} = 1 \cdot (4-2-16-3) \\\\ \boxed{A_{11} = -17}[/tex]

Agora iremos calcular o cofator do segundo elemento:

[tex]A_{ij} = (-1)^{i+j} \cdot D_{A} \\\\ A_{21} = (-1)^{2+1} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\\\ A_{21} = (-1)^{3} \cdot \begin{vmatrix} 3 & -1 & 4 \\ -1 & 2 & 3 \\ 4 & 1 & 2 \end{vmatrix} \\\\ A_{21} = -1 \cdot (12-12-4-32-2-9) \\\\ A_{21} = -1 \cdot -47 \\\\ \boxed{A_{21} = 47}[/tex]

Voltando:

[tex]D = -1 \cdot A_{11} + 2 \cdot A_{21} \\\\ D = -1 \cdot (-17) + 2 \cdot 47 \\\\ D = 17+94 \\\\ \boxed{\boxed{D= 111}}[/tex]

Olha, o resultado deu 111. Consultando uma calculadora online, ela confirmou. Está certo esse resultado que te passaram?

Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.