O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.
Sagot :
Veja que: Cn,2 = n!/(n-2)!2!
Cn,2 = n(n-1)/2
Logo: n(n-1)/2 = n+2
n² - n = 2n + 4
n² - 3n - 4 = 0
n = 4 ou n = -1
Como n deve ser natural, teremos n = 4.
Cn,2 = n(n-1)/2
Logo: n(n-1)/2 = n+2
n² - n = 2n + 4
n² - 3n - 4 = 0
n = 4 ou n = -1
Como n deve ser natural, teremos n = 4.
Da fórmula de Combinação [tex]\boxed{C_{n,p}=\frac{n!}{(n-p)!p!}}[/tex], temos que:
[tex]C_{n,p}=\frac{n!}{(n-p)!p!}\Leftrightarrow C_{n,2}=\frac{n!}{(n-2)!2!}\\\\\\n+2=\frac{n(n-1)(n-2)!}{(n-2)!2\cdot1}\\\\\\\frac{n(n-1)}{2}=n+2\\\\n(n-1)=2(n+2)\\\\n^2-n=2n+4\\\\n^2-3n-4=0\\\\n^2-4n+n-4=0\\\\n(n-4)+1(n-4)=0\\\\(n-4)[n+1]=0[/tex]
Uma vez que [tex]n\geq0[/tex], isto é, [tex]n\in\mathbb{N}[/tex] temos que [tex]\boxed{\boxed{n=4}}[/tex]
[tex]C_{n,p}=\frac{n!}{(n-p)!p!}\Leftrightarrow C_{n,2}=\frac{n!}{(n-2)!2!}\\\\\\n+2=\frac{n(n-1)(n-2)!}{(n-2)!2\cdot1}\\\\\\\frac{n(n-1)}{2}=n+2\\\\n(n-1)=2(n+2)\\\\n^2-n=2n+4\\\\n^2-3n-4=0\\\\n^2-4n+n-4=0\\\\n(n-4)+1(n-4)=0\\\\(n-4)[n+1]=0[/tex]
Uma vez que [tex]n\geq0[/tex], isto é, [tex]n\in\mathbb{N}[/tex] temos que [tex]\boxed{\boxed{n=4}}[/tex]
Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.