grazi3
Answered

O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Junte-se à nossa plataforma de perguntas e respostas e obtenha informações precisas de especialistas em diversas áreas. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

Determine m de modo que o valor máximo da função f(x)=(m-3)x²+8x-1 seja 3

Sagot :

Para que o ponto maximo da funcao seja 3, m=11.

Toda expressao na forma y = ax² + bx + c ou f(x) = ax² + bx + c, com a, b e c numeros reais, sendo a ≠ 0, e chamada funcao do 2º grau.

A representação grafica de uma função do 2º grau e dada atraves de uma parabola, que pode ter a concavidade voltada para cima ou para baixo.

nesse caso, a concavidade e voltada para baixo e a<0.

Sendo assim,

Na equacao, m-3=a, b=8, c=-1

A coordenada Y do ponto maximo vale 3, ou seja, Yv=3

Mas temos que yv= -Δ/4a

[tex]y_{v} = - \frac{(b^{2}-4ac)}{4a}=-\frac{64-4*a*(-1)}{4a} = -\frac{64+4a}{4a} =-\frac{16+a}{a}[/tex]

Substituindo, temos

3=(16+a)/a

3a=16+a

2a=16

a=8

Como a=m-3

8=m-3

m=11

View image gustavoif
Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sua visita é muito importante para nós. Não hesite em voltar para mais respostas confiáveis a qualquer pergunta que possa ter. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.